ACKNOWLEDGEMENTS

The PWI gratefully acknowledges the contribution made by Richard Johnson as the principal author, Brian Counter as chief editor and Howard Smith as consultant metallurgist in the creation of this book and Brian Whitney and John Hempshall from Network Rail and Marc Clark from Transport for London who kindly peer reviewed this book.

We also recognise the support given by Thermit Welding (GB) Ltd, British Steel PLC and LBFoster in the development of the book. Also, the significant contribution from Jay Jaiswal, Paul Baker, Jay Benson and finally Peter Lugg (FPWI), a long-time supporter of this project and the source of much of the history of Rail and Rail Welding in Great Britain. Other members of the technical team include lan Banton, Daniel Pyke, and Sean Gleason.

The book has been prepared with reference to Network Rail and Transport for London.

Production and printing of the volume has been led by Alison Stansfield, Marketing Director PWI with layout and formatting by Kerrie Pearson, Graphic Designer.

Photographs have been kindly provided by:

Richard Johnson, Howard Smith, London Underground, Jay Jaiswal, Network Rail, Thermit Welding (GB) Ltd, Railtech UK Ltd, Rail Technology.com, Cemex Rail Solutions, Rail One, LCR Ltd, Balfour Beatty Rail Technologies, Rail Infrastructure, Railway Gazette, Carillion, Colas Rail, British Steel. Tom Merrill, Chris Stratton.

_

Contents

46	2.3 THE EVOLUTION OF RAIL WELDING METHODS 1885 - 1910
43	2.2 THE RAIL EXPANSION CONTRACTION PROBLEM
43	2.1 INTRODUCTION
43	HISTORY OF RAIL WELDING
.43	CHAPTER 2
39	1.5 RAIL SUPPLIERS IN THE UK
ω.	1.4.4 Grooved (embedded) rail profiles
ω	1.4.3 Flat bottomed rail
ω	1.4.2 Bull head rail
ω	1.4.1 Parallel headed rail
ω	1.4 RAIL SECTIONS
22	1.3.1 The Bessemer steelmaking process
22	1.3 THE DEVELOPMENTS OF IRON AND STEELMAKING PROCESSES
2,	1.2 THE EARLY YEARS OF RAILS
2	1.1 DEVELOPMENT OF THE BRITISH RAILWAY SYSTEM
2	INTRODUCTION
: 2	CHAPTER 12
	INTRODUCTION

2.3.1 Full fusion weld	47
	48
2.3.5 Electric arc welding	49
2.3.6 Oxy-acetylene welding	50
2.3.7 Oxy-acetylene pressure butt welding	51
2.4 DEVELOPMENTS 1910-1935	51
2.5 DEVELOPMENTS 1935 - 1960	54
2.6 DEVELOPMENTS 1960 - 1985	57
2.7 DEVELOPMENTS 1985 TO 1996	61
2.8 POST PRIVATISATION (AFTER 1996)	62
CHAPTER 365	65
CURRENT STANDARDS FOR RAILS AND WELDS65	65
3.1 STANDARDS DEVELOPMENT 6	65
3.2 EUROPEAN STANDARDS FOR RAILS	67
3.3 UK NATIONAL STÄNDARDS FOR RAILS	73
3.4 CLASSIFICATION OF WELDING PROCESSES	75
3.4.1 Fusion welding	75
3.4.2 Solid phase welds	77
3.5 WELDING PROCESSES FOR RAILS 7	78

122	RAIL - METALLURGY
122	CHAPTER 5
120	4.9 WELDABILITY
113	4.8 RAIL IDENTIFICATION
108	4.7 THE MANUFACTURE OF RAIL
104	4.6 CONTINUOUS CASTING
102	4.5 PRODUCTION OF STEEL
98	4.4 STEEL TYPES
96	4.3 THE METALLURGY OF IRON AND STEEL
94	4.2 THE PRODUCTION OF IRON
ING 94	4.1 THE USE OF IRON AND STEEL IN TRACK ENGINEERING
LITY94	RAIL - MANUFACTURE, PROPERTIES AND WELDABILITY
94	CHAPTER 4
85	3.5.5 Alumino-thermic welds
84	3.5.4 Standards for flash butt welding of rail
82	3.5.3 Standards applied to rail welding processes
79	3.5.2 Mobile processes
78	3.5.1 Stationary (fixed) processes

7.2 FLASH BUTT WELDING

7.3 MANUFACTURE OF LONG WELDED RAIL (LWR)	219
7.4 FLASH BUTT WELDING ON SITE USING MOBILE EQUIPMENT	230
7.4.1 Quality requirements	235
7.4.2 Mobile flash butt welding at site – a typical example	236
7.5 ALUMINO-THERMIC WELDING	240
7.5.1 Process development	241
7.5.2 The Alumino-thermic reaction	243
7.5.3 The alumino-thermic welding mixture	245
7.5.4 Manufacture of the alumino-thermic portion	250
7.5.5 Quality control	252
7.5.6 Alumino-thermic moulds	254
7.5.7 The crucible	262
7.5.8 Igniters	266
7.5.9 Mould sealing materials	267
7.5.10 Welding equipment	268
7.5.11 Permitted track and rail condition for welding	272
7.5.12 Welding processes for Vignole rails	272
7.5.13 The Thermit® SkV-E process	275
7.5.14 The Railtech PLA standard process	279
7.5.15 Other processes	282
7.6 INSTALLATION OF ALUMINO-THERMIC WELDS	287
7.6.1 The installation process - general requirements	290

7.6.2 Special requirements for rail stressing	29
7.6.3 The welding process	29
7.6.4. Competence and training	30
CHAPTER 8	30
IN-SERVICE PERFORMANCE OF RAILS	30
8.1 WHEEL - RAIL CONTACT FEATURES	30
8.2 DEGRADATION THROUGH WEAR AND DEFECTS	308
8.3 LOSS OF RAIL PROFILE THROUGH WEAR	309
8.4 HARDNESS AND WEAR RESISTANCE	310
8.5 RAIL FAILURES	319
8.5.1 Rail foot failures	319
8.6 FAILURES FROM WELD REPAIRS	321
CHAPTER 9	. 323
BROKEN AND DEFECTIVE RAILS	. 323
9.1 INTRODUCTION AND TERMINOLOGY	323
9.2 DEFECT CLASSIFICATION SYSTEMS	324
9.2.1 Normal rail features	326
9.2.2 Rail sections	327
9.2.3 Broken rails	328
9.3 RAIL DEFECTS	329

9.3.1 Inherent defects - manufacturing defects	329
9.3.2 Web Defects	348
9.3.3 Foot Defects	350
CHAPTER 10	356
ROLLING CONTACT FATIGUE (RCF)	356
10.1 INTRODUCTION	356
10.2 SUB-SURFACE INITIATED SQUAT TYPE rcf	357
10.3 SURFACE INITIATED RCF GAUGE CORNER CRACKING and	HEAD
CHECKS	359
10.4 CRACK DEVELOPMENT	360
10.4.1 Period to crack initiation	361
10.4.2 Position of initiation on rail head	364
10.4.3 Linear density of RCF cracks	364
10.4.4 Angle of RCF cracks on rail running surface	365
10.4.5 Growth of RCF cracks	366
10.5 HEAD DEFECTS	368
10.5.1 Shelling of the gauge corner	368
10.5.2 Shelling of the running band	370
10.6 GAUGE CORNER CRACKING (GCC)	373
10.7 HEAD CHECKING	375

11.2.11 Weld Collar surface distortion and bulges	11.2.10 Surface cavities	11.2.9 Isolated and multiple inclusions	11.2.7 Lack of fusion	11.2.6 Gross porosity	11.2.5 Surface porosity and cavities	11.2.4 Metal beads and slag (inclusions)	11.2.3 Localised head porosity	11.2.2. Horizontal web cracks	11.2.1 Excessive flashing	11.2 DEFECTS IN ALUMINO-THERMIC WELDS	11.1 INTRODUCTION	WELD DEFECTS	CHAPTER 11	10.12 FALSE FLANGE DAMAGE	10.11 TONGUE LIPPING ASSOCIATED RCF	10.10 FIELD FLOW OR FIELD CRACKING	10.9 WHEEL BURN	10.8 SQUATS
398	39/	396	395	394	393	392	390	389	388	3 80	ω ∞	: 38	38	38	33	38	38	ω

11.2.12 The "Black Hole"	400
11.3 FLASH BUTT WELDS	401
11.3.1 Misalignment (step)	401
11.3.2 Poor weld trimming	402
11.3.3 Die burn	402
11.3.4 Weld craters and flat spots	403
11.4 DEFECTS IN ARC WELD REPAIRS	404
11.4.1 Slag inclusions	404
11.4.2 Surface cracking	405
11.4.3 Surface porosity (pin hole)	406
CHAPTER 12	408
INSPECTION OF WELDS	. 408
12.1 INTRODUCTION	408
12.2 MOBILE FLASH BUTT WELDS (MFBW)	408
12.3 ALUMINOTHERMIC WELDS	410
12.3.1 Features symptomatic of faults likely to cause premature failure or long term degradation of the welded joint 411	ailure 411
12.3.2 Features not likely to compromise the integrity of the welded joint, but indicating a low standard of workmanship 412	elded 412
12.3.3 ATW weld inspection process	412

441	13.6.1 Historical background of grinding
441	13.6 RAIL HEAD TREATMENT BY GRINDING
440	13.5.7 Top-of-rail friction management systems
440	13.5.6 Electric lubricators
437	13.5.5 Trackside lubricators
436	13.5.4 Co-efficient of friction at the wheel/rail interface
435	13.5.3 Rolling radius and the curve radius
434	13.5.2 Wheelset conicity
434	13.5.1 Principles of steering
434	13.5 RAIL LUBRICATION
433	13.4 MAINTENANCE ACTIVITIES
429	13.3 COMPONENTS AND OTHER TRACK FEATURES
428	13.2 RUNNING BAND
428	13.1 INTRODUCTION
428	MAINTENANCE OF RAILS
428	CHAPTER 13
427	12.5.3 Repairs to crossings
427	12.5.2 Repairs to switches
425	12.5.1 Repairs to plain line
425	12.5 INSPECTION OF REPAIRS AND MAINTENANCE WELDS

12.4 ULTRASONIC INSPECTION OF ALUMINO-THERMIC WELDS

13.6.2 Conventional grinding	443
13.6.3 Switch and crossing grinding	446
13.7 RAIL HEAD TREATMENT BY RAIL MILLING	446
13.7.1 Introduction	446
13.7.2 Milling technology and operation	446
13.7.3 Principle of milling cutting with swarf generated	448
13.7.4 Milling of turnouts	456
13.7.5 Milling rail finish quality	457
13.7.6 Summary rail milling versus grinding	458
13.8 ROTATONAL PLANING	459
13.8.1 Rotational planing	459
13.9 HIGH SPEED MILLING	460
CHAPTER 14	462
REPAIR BY WELDING	462
14.1 INTRODUCTION	462
14.2 ARC WELDING PROCESSES.	463
14.2.1 Manual metal arc	463
14.2.2 Flux-cored arc welding (FCAW or FCA)	466
14.2.3 Power supply	470
14.2.4 Auxiliary equipment	471
14.2.5 Fully automatic flux cored welding	472

**-3 REFAIR AND MAINTENANCE WELDING PROCEDURES	474
14.3.1 Repair of defects in plain line	474
14.3.2 Repairs to switches	480
14.3.3 Repair of crossings	483
14.3.4 Repair of cast manganese crossings	483
14.3.5 Fabricated crossings	487
14.3.6 Crossing inspection	490
14.4 ARC WELDER TRAINING (PRESCRIBED BY NETWORK RAIL)	490
14.4.1 Training processes	491
14.4.2 Course content	493
14.4.3 Weld inspectors	495
14.4.4 Certification	495
14.5 RAIL REPAIR USING ALUMINOTHERMIC METHODS	496
14.5.1 Background	496
14.5.2 The Thermit head repair process	497
14.5.3 The Railtech head wash process	503
14.5.4 Inspection	506
14.5.5 Welder training	506
CHAPTER 15	507
NNOVATION AND NEW DEVELOPMENTS507	.507
15,1 RAIL	507

525	index
523	15.4.3 Low preheat head restoration
521	15.4.2 Discrete Defect Repair (DDR)
520	15.4.1 Gas shielded arc weld joining of rails
520	15.4 INNOVATION IN ARC WELDING PROCESSES
519	15.3.3 Thermit weld ignition devices
518	15.3.2 The Thermit® Smartweld control
517	15.3.1 Railtech gas box
517	15.3 ALUMINOTHERMIC PROCESS DEVELOPMENTS
514	15.2.3 Induction welding
512	15.2.2 Orbital friction welding
511	15.2.1 Flash butt welding
511	15.2 WELDING PROCESS DEVELOPMENT
509	15.1.3 Rail management processes
50:	15.1.2 Coated rails
50:	15.1.1 Rail steels